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An In Vitro Mouse Model of Congenital Cytomegalovirus-
induced Pathogenesis of the Inner Ear Cochlea
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Congenital human cytomegalovirus (CMV) infection is the leading nongenetic etiology of sensorineural hear-
ing loss (SNHL) at birth and prelingual SNHL not expressed at birth. The paucity of temporal bone autopsy
specimens from infants with congenital CMV infection has hindered the critical correlation of histopathology
with pathogenesis. Here, we present an in vitro embryonic mouse model of CMV-infected cochleas that
mimics the human sites of viral infection and associated pathology. There is a striking dysplasia/hyperplasia
in mouse CMV-infected cochlear epithelium and mesenchyme, including organ of Corti hair and supporting
cells and stria vascularis. This is concomitant with significant dysregulation of p19, p21, p27, and Pcna gene
expression, as well as proliferating cell nuclear antigen (PCNA) protein expression. Other pathologies similar
to those arising from known deafness gene mutations include downregulation of KCNQ1 protein expression
in the stria vascularis, as well as hypoplastic and dysmorphic melanocytes. Thus, this model provides a
relevant and reliable platform within which the detailed cell and molecular biology of CMV-induced deaf-
ness may be studied. Birth Defects Research (Part A) 97:69-78, 2013. © 2012 Wiley Periodicals, Inc.
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INTRODUCTION

Congenital cytomegalovirus (CMV) infection is the lead-
ing cause of nongenetic birth defects, variably inducing
hearing loss, blindness, and mental retardation (Fowler
and Boppana, 2006; Pass et al., 2006; Schleiss and Choo,
2006; Pass, 2007; Schleiss, 2006, 2008; www.cdc.gov/cmv).
Sensorineural hearing loss (SNHL) is the most frequent
sequelae of in utero infection, accounting for 20 to 60% of
all SNHLs. It is estimated that at least 8000 infants born
annually in the United States will have congenital CMV-
induced SNHL, at birth or later in early childhood. In
newborns with congenital CMV infection, higher viral
load at birth is consistently correlated with the presence of
symptoms of congenital CMV and an elevated risk of
SNHL; asymptomatic newborns have a lesser elevated
risk (Cannon et al., 2011). Indeed, the cumulative risk of
SNHL by age 8 is approximately 34% and 7% for popula-
tions of symptomatic and asymptomatic congenital CMV-
infected children, respectively (Rosenthal et al., 2009).
Thus, it is now well-established that congenital CMV
infection is the major nongenetic cause of SNHL at birth
and prelingual SNHL not expressed at birth (Barbi et al.,
2003; Fowler and Boppana, 2006; Nance et al., 2006;
Schleiss and Choo, 2006; Foulon et al., 2008a; Foulon et al.,
2008b; Grosse et al., 2008; Cheeran et al., 2009).

Sensorineural hearing is mediated by the organ of
Corti and associated structures in the scala media (SM),
all of which sits inside the cochlear duct of the inner ear
between the scala vestibuli (SV) and scala tympani (ST);
the organ of Corti contains inner and outer mechanosen-
sory hair cells embedded in a variety of supporting cells
(Fig. 1A-C). Fluid-borne vibrations create a shearing
vector in the stereocilia of the hair cells and subsequent
signaling to the auditory cortex via the spiral ganglion
and cochlear nerve.

Because of limited autopsy material, little is presently
known about the underlying cochlear pathology of
congenital CMV-induced SNHL. Nevertheless, what is
known about the histopathology is quite instructive:
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Figure 1. Mouse cytomegalovirus (mCMYV) induces severely abnormal cochlear phenotypes. (A, D) Histologic sections through the ba-
sal, middle, and apical turns of the control (A) and mCMV-infected (D) embryonic day 15 (E15) cochlear ducts cultured for 12 days
(E15 + 12). (B, E) Histology of paraffin-embedded control (B) and mCMV-infected (E) E15 + 12 cochleas. (C, F) Higher magnification of
semithin plastic sections of control (C) and mCMV-infected (F) E15 + 12 cochleas. (A-C) In controls, the cochlear duct within the carti-
laginous otic capsule (COC) is separated into scala vestibuli (SV), scala media (SM), and scala tympani (ST), each exhibiting distinct
lumina. The organ of Corti (OC, black bracket) displays sensory (hair) (double arrows) and nonsensory (supporting) epithelial cells. Higher
magnification (C) of organ of Corti showing the single inner hair cell (I) separated from the three outer hair cells (123) by the tunnel of
Corti (t). Rm, Reissner’s membrane; sv, stria vascularis; T, tectorial membrane. (D-F) The mCMV-infected cochleas are severely dysmor-
phic, exhibiting abnormal sensory (hair) (triple arrows) and nonsensory epithelia, Reissner’s membrane (double arrowheads), and stria
vascularis. Clusters of cytomegalic, basophilic, and pleiomorphic infected and affected cells are seen in Reissner’s membrane (double
arrowheads) and stria vascularis, as well as throughout the ST (E,*) and SV. Pathognomonic kidney shaped nuclei are seen in cells of
Reissner’s membrane (F, arrowhead), stria vascularis (E, right inset), and in mesenchymal cells found throughout SV and ST (E, left inset;
F, arrowheads). Note the abnormal positioning of the tunnel of Corti in mCMV-infected cochleas (F). Bar: (A, D)-50 um; (B, E)-30 um;

(C, F)-10 um; (E) insets-15 pum.

degeneration or loss at birth of inner and outer hair cells,
Reissner’s membrane abnormalities, stria vascularis dys-
plasia, and labyrinthitis (Myers and Stool, 1968; Davis
and Hawrisiak, 1977, Davis et al., 1977, Stagno et al.,
1977; Davis, 1979; Davis, 1981; Strauss, 1990; Rarey and
Davis, 1993; Schuknecht, 1993; Teissier et al., 2011). Fur-
ther, viral inclusion bodies are found in the organ of
Corti, Reissner’s membrane, stria vascularis, and lining of
the endolabyrinth (Myers and Stool, 1968; Davis et al.,
1977; Davis, 1981; Teissier et al., 2011); viral antigens are
immunodetected in the organ of Corti, Reissner’s mem-
brane, stria vascularis, and spiral ganglia (Stagno et al.,
1977; Teissier et al., 2011). All this notwithstanding, the
paucity of temporal bone autopsy specimens from infants
with congenital CMV infection has hindered the critical
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correlation of pathology with mechanisms of CMV-
induced SNHL (Davis, 1981; Strauss, 1990; Fowler and
Boppana, 2006). Thus, there is a clear need for good ani-
mal models to investigate the histologic and molecular
pathogenesis of CMV-induced SNHL.

Strict species-specificity of human CMV (hCMV) and
the inability of species-specific rodent CMV to cross the
placenta of mice and rats have hindered productive
study of this virus in small animal models (Kern, 2006;
Pass et al., 2006; Pass, 2007). To bypass the need for
transplacental transmission of mouse CMV (mCMYV), the
mCMYV has been directly injected into the fetus at midg-
estation or into the endometrial lumen of pregnant mice
at the time of embryo implantation, respectively (Baskar
et al.,, 1983; Baskar et al., 1987; Baskar et al., 1993; Tsut-
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sui, 1995; Li and Tsutsui, 2000; Tsutsui et al., 2005).
Although congenital embryonic abnormalities were
reported, the high degree of fetal loss and difficulty in
conducting these experiments limits the use of these in
vivo mouse models for cell and molecular studies. Evi-
dently, although the guinea pig (gp) is a well-studied
model of transplacental viral transmission (Woolf, 1991;
Kern, 2006; Schleiss and Choo, 2006; Schleiss, 2006, 2008),
its use has been limited because of significant differences
between human in utero CMV infection and the gpCMV
congenital infection model, as well as differences
between hCMV and gpCMV biologic characteristics
(Kern, 2006; Schleiss and Choo, 2006; Pass, 2007). Clearly,
alternative animal models are needed to delineate the
cell and molecular mechanisms underlying CMV-induced
cochlear pathogenesis.

A useful and relevant animal model has always to be
informed by two key clinical observations: (1) in utero
CMV infection causes SNHL, whereas postnatally
acquired infection in premature infants does not (Vollmer
et al., 2004); (2) SNHL is more common in infants with
congenital CMV infection resulting from first trimester
maternal infection than when infection takes place later
in pregnancy (Pass et al., 2006; Foulon et al., 2008a; Fou-
lon et al., 2008b). Both of these findings highlight the
need to investigate the mechanisms of CMV-induced
cochlear pathogenesis in embryonic organs. To this end,
we have developed an in vitro embryonic mouse model
of CMV-induced pathogenesis that mimics the known
human pathology, including dysplasia of the organ of
Corti, Reissner’s membrane, and stria vascularis. This
model will prove useful in studying the CMV-induced
dysregulation of signaling pathways during early and
late stages of cochlear morphogenesis.

MATERIALS AND METHODS
Animals

Timed pregnant inbred C57/BL6 female mice were
purchased from Charles River (Wilmington, MA; plug
day = day 0 of gestation) and embryonic day 15 (E15)
fetuses were harvested as previously described (Melnick
et al., 2006). All protocols involving mice were approved
by the Institutional Animal Care and Use Committee
(USC, Los Angeles, CA).

Organ Culture

Whole inner ears were dissected of E15 mouse fetuses
and the ventral cochlear region and dorsal vestibular
region were separated. Cochleas were cultured using a
modified otic organ culture system first described by Van
de Water and Ruben (1971) and chemically defined BGJb
medium (Invitrogen Corporation, Carlsbad, CA) supple-
mented with 10% fetal calf serum, 0.5 mg ascorbic acid/
mL, and 50 units/mL penicillin/streptomycin (Invitrogen
Corporation), pH 7.2, as previously described (Melnick
et al.,, 2006). We cultured the cochlear duct with sur-
rounding periotic mesenchyme because prior studies
have demonstrated cochlear morphogenesis and hair cell
differentiation are dependent on a complex series of
interactions between otic epithelia and periotic mesen-
chyme (e.g., Van de Water and Represa, 1991;
Doetzlhofer et al., 2004; Xu et al., 2007) and CMV seems
to primarily infect embryonic mesenchyme (Melnick

et al., 2006; Jaskoll et al., 2008a; Jaskoll et al., 2008b). For
mCMYV infection, cochleas were incubated with 1 X 107
plaque-forming units (PFU)/mL of lacZ-tagged mCMV
RM427+ in BGJb on day 0 for 24 hours and then cul-
tured in virus-free media; controls consisted of cochleas
cultured in control medium for the entire period. Coch-
leas were collected and processed for hematoxylin and
eosin histology, quantitative RT-PCR (qRT-PCR), immu-
nolocalization, or cell proliferation (proliferating cell
nuclear antigen [PCNA]) analysis. For qRT-PCR, four to
five cochleas were pooled, snap frozen, and stored at
—80°C. For histology, immunolocalization, and PCNA
analyses, cochleas were fixed for 4 hours in Carnoy’s
fixative or overnight in 4% paraformaldehyde at 4°C,
embedded in paraffin, serially sectioned at 8 um, and
stained as previously described (Melnick et al., 2006). For
B-galactosidase staining, cochleas were fixed in 0.2%
gluteraldehyde, stained, and processed, as previously
described (Melnick et al., 2006). For semi-thin sections,
E15 + 12 cochleas were fixed overnight in 10% neutral
buffered formalin at 4°C, embedded in JB-4 resin accord-
ing to the JB-4 embedding kit (Polysciences, Inc, Warring-
ton, PA), sectioned at 1 pum, and stained with 1%
toluidine blue.

mCMYV Distribution

We assayed B-galactosidase (lacZ) activity and localiza-
tion of viral immediate early (IE1) proteins, as described
in Melnick et al. (2006). For B-galactosidase staining:
briefly, mCMV-infected E15 + 6, E15 + 9, and E15 + 12
cochleas were processed, stained for 4 to 6 hours, and
photographed. Whole mounts were then dehydrated
through graded alcohols, embedded in paraffin, serially
sectioned at 8 um, and counterstained with eosin. For IE1
distribution: mCMV-infected E15 + 6, E15 + 9, and E15
+ 12 cochleas were embedded in low melting point para-
plast, serially sectioned, and incubated overnight with
antimouse IE1 antibodies (kindly provided by Dr.
Edward Mocarski, Emory University); controls consisted
of sections incubated in the absence of primary antibody.
For each experimental protocol, a minimum of three to
five explants/day were analyzed.

Immunolocalization

Cultured cochleas were embedded in low melting
point paraplast, serially sectioned, and immunostained
essentially as described in Melnick et al. (2006 and 2011)
using the following commercially available antibodies:
myosin-VI (Proteus Biosciences, Inc, Ramona, CA; cat.
#25-6791); myosin-VIla (Proteus Biosciences, cat. #25-
6790); and KCNQ1 (Santa Cruz Biotechnology, Santa
Cruz, CA; cat. #sc-20816). Nuclei were counterstained
with DAPI (Invitrogen Corporation). Negative controls
were performed in parallel under identical conditions
and consisted of sections incubated without primary anti-
bodies. For each treatment group, three to five explants
per day per antibody were analyzed. All images in this
study were acquired with a Zeiss Axioplan microscope
(Carl Zeiss Group, Oberkochen, Germany) equipped with
a SPOT RT3 camera and processed with SPOT Advanced
(Spot Imaging Solutions, Sterling Heights, MI) and
Adobe Photoshop CS2 software (Adobe Systems Incorpo-
rated, San Jose, CA).
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Cell-specific Distribution of PCNA

The cell-specific localization of PCNA was determined
using the Zymed mouse PCNA kit (Invitrogen Corpora-
tion) and counterstained with hematoxylin, as previously
described (Melnick et al., 2006); the cytoplasm stains blue
and PCNA-positive nuclei stains dark brown. In this set
of experiments, three to eight cultures per treatment per
day were analyzed.

PCNA immunolocalization is frequently used as a sur-
rogate marker of cell division (e.g., Chen and Segil, 1999;
Melnick et al., 2006; Melnick et al., 2011; von Bohlen und
Halbach, 2011), notably because it is the “maestro” of the
DNA replication fork (Moldovan et al., 2007). High fidel-
ity genome duplication is assured through a collection of
dynamic PCNA-containing protein complexes at the fork
(Kirchmaier, 2011). During DNA replication, PCNA is
loaded onto DNA at the 3’ ends of primer-template junc-
tions and acts as a sliding clamp that interacts with and
enhances the efficiency of the DNA polymerases on the
leading and lagging DNA strands (Kirchmaier, 2011).
Thus, because PCNA is central to successful DNA repli-
cation, PCNA is a well-recognized surrogate cell division
marker (von Bohlen und Halbach, 2011). Although the
sensitivity of this immunoassay approaches 100%, the
specificity may be variably reduced because PCNA is
also essential for DNA repair and its relatively long half-
life (8-20 hours) results in some presence in early G,
(Zacchetti et al., 2003). This may result in an overestima-
tion of the fraction of cells actually dividing.

Quantitative RT-PCR

For analysis of gene expression, gRT-PCR was con-
ducted, as previously described (Melnick et al.,, 2006;
Melnick et al., 2009), on E15 + 6, E15 + 9, and E15 + 12
control, and mCMV-infected samples; each sample con-
sisted of four to five pooled explants. RNA was extracted
and 1 pg RNA was reverse transcribed into first strand
c¢DNA using ReactionReady First Strand cDNA Synthesis
Kit: C-01 for reverse transcription (SABiosciences, Freder-
ick, MD). The primer sets used were prevalidated to give
single amplicons and purchased from SABiosciences:
Kengl (PPM04198A); p19 (Cdkn2d; cat. #PPMO02987A);
p21 (Cdknla; cat. #PPMO02901A); p27 (Cdknlb; cat.
#PPMO02909A); and Pcna (cat. #PPMO03456A). Primers
were used at concentration of 0.4 microM. The cycling
parameters were 95°C, 15 minutes; 40 cycles of (95°C, 15
seconds; 55°C, 30-40 seconds and 72°C, 30 seconds).
Specificity of the reactions was determined by subse-
quent melting curve analysis. RT-PCRs of RNA (not
reverse transcribed) were used as negative controls.
GAPDH was used to control for equal cDNA inputs and
the levels of PCR product were expressed as a function
of GAPDH. The relative fold changes of gene expression
between the gene of interest and GAPDH, or between
the E15 + 6, E15 + 9, and E15 + 12 control and mCMV-
infected samples, were calculated by the 2*“T method.
Significant expression differences between mCMV-
infected and control samples were determined by ¢ test,
with @ = 0.01 and the null hypothesis of R = 1, where R
is the mean relative expression ration (mCMV/control)
across the entire sample (n = 9). Expression ratios were
log transformed before analysis to satisfy the assumption
of normality.
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RESULTS

mCMYV, having many features in common with hCMV,
has been widely used for studying the postnatal pathoge-
nesis associated with acute, latent, and recurrent infec-
tions (Krmpotic et al, 2003; Cheeran et al., 2009); the
mouse is the most comprehensive model system for the
developing mammalian cochlea (Kelley, 2007; Driver and
Kelley, 2009; Puligilla and Kelley, 2009). Here, we devel-
oped an embryonic mouse organ culture model to study
the effect of mCMV on embryonic cochlear development.
Specifically, we infected E15 cochleas with lacZ-tagged
mCMV for up to 12 days in vitro, as previously
described (Melnick et al.,, 2006; Jaskoll et al.,, 2008a;
Jaskoll et al., 2008b) using a modified Van de Water and
Ruben (1971) organ culture system; controls were
cultured in virus-free, chemically defined media. mCMV-
infected cochleas are developmentally delayed and
exhibit severely abnormal phenotypes (Figs. 1-5).

In controls, cochlear morphogenesis and histodifferen-
tation progresses normally in vitro (Fig. 1A-C). The
cochlear duct is separated into the SV, SM, and ST; the
organ of Corti, located on the floor of the SM, is charac-
terized by differentiating epithelial sensory hair cells and
nonsensory supporting cells (Fig. 1B, C). Differentiating
hair cells can be identified based on position, an increase
in nuclei size, a more luminal position of their nuclei,
and expression of myosin VI and VlIla, cytoplasmic hair
cell-specific markers (Hasson et al.,, 1995; Hasson et al,,
1997). In controls, the organ of Corti displays three outer
hair cells and one inner hair cell (Figs. 1B, C; and 2A).

mCMYV infection of E15 cochleas induces a severely
dysmorphic and dysplastic phenotype in the organ of
Corti, Reissner’s membrane, stria vascularis, ST, and SV
(Fig. 1D-F). Cytomegalic, basophilic, and pleomorphic
cells (some with viral inclusion bodies) are found in
Reissner’s membrane and stria vascularis (Fig. 1E, F).
The sensory (hair) and nonsensory (supporting) epithelial
cells of the organ of Corti are severely disorganized (Fig.
1E, F); significantly, mCMYV seems to induce a hair cell
hyperplasia that is densely packed and misaligned
(Fig. 2B). mCMV infection also induces substantial differ-
ences in the periotic mesenchyme that surrounds the
forming ST and SV, namely the presence of basophilic,
cytomegalic cells (Fig. 1E, F). Coincident with the pres-
ence of pathognomonic kidney shaped nuclei (Fig. 1E
insets, F), lac-Z-tagged mCMV (Fig. 3A), and viral IE1
(immediate early 1) protein (Fig. 3B) are clearly evident
in Reissner’s membrane, stria vascularis, ST, and SV, and
less so in the organ of Corti. Finally, it should be noted
that near simultaneous administration of the antiherpes
viral nucleoside, acyclovir, with mCMV infection obvi-
ates all cochlear abnormality (data not shown), as is the
case with other developing organs previously studied
(Melnick et al., 2006; Jaskoll et al., 2008a; Jaskoll et al.,
2008b; Melnick et al., 2011).

Dysregulation of the Cell Cycle

Given that (1) mCMV infection has repeatedly been
shown to induce cell proliferation and to concomitantly
dysregulate the gene and protein expression of numerous
components of the cell cycle (Hertel and Mocarski, 2004;
Melnick et al.,, 2006; Hertel et al., 2007; Melnick et al.,
2011), and (2) withdrawal from the cell cycle is a
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Figure 2. Mouse cytomegalovirus (mCMYV) induces a dramatic dysplasia/hyperplasia of hair cells. CONT (A) and mCMV-infected (B)
embryonic day 15 (E15) + 12 cochleas. Hair cells are labeled with an antibody to myosin (myo, green); nuclei are stained with DAPI
(blue). Controls (A) display one inner hair cell (IHC) and three outer hair cells (OHCs) properly aligned. mCMYV (B) induces a notable
increase in hair cell population; this expanded hair cell population is densely packed and disorganized. (A, B)-50 um.

prerequisite of organ of Corti histodifferentation (Ruben,
1967; Chen and Segil, 1999; Laine et al., 2007), we com-
pared the cell-specific distribution of PCNA, an E2F/DP
target gene during the S-phase of active cell division
(Chen and Segil, 1999; Melnick et al., 2006), in infected
and uninfected E15 cochleas cultured for 6 (E15 + 6), 9
(E15 + 9), and 12 (E15 + 12) days (Fig. 4). A dramatic
increase in PCNA-positive nuclei is seen in mCMV-
infected and affected cochlear mesenchymal and epithe-
lial cells, including apparent nonsensory, supporting
epithelial cells of the organ of Corti (compare Fig. 4B, D,
F to 4A, B, C); the variability of PCNA expression is time
dependent (compare Fig. 4B, D, and F). The results are
consistent with the evolving hyperplasias and dysplasias
noted above (Figs. 1 and 2).

Cyclin-dependent kinase (Cdkn) inhibitors are critical
gatekeepers of S-phase entry in the cell cycle; they bind

to and inhibit cyclin-dependent kinase/cyclin complexes,
and thus inhibit cell proliferation. Inhibitors p19
(Cdkn2d) and p21 (Cdknla) and inhibitor p27 (Cdknlb)
serve to regulate the number of hair cells and supporting
cells, respectively (Chen and Segil, 1999; Laine et al,,
2007). The qRT-PCR reveals the time-dependent changes
in p19, p21, and p27 gene expression relative to Pcna gene
expression (Table 1). At E15 + 6, there is a highly signifi-
cant (p < 0.001) drop in p19 and p27 expression but a
near 50% increase in p21 (p < 0.01); there is a modest but
significant (p < 0.001) increase in Pcna. Although p19 and
p27 expression rebounds across postinfection days 9 and
12, there remains a highly significant (p < 0.001) 2.5 to 3-
fold increase in Pcna expression; this is consistent with
the common lag between gene transcription and protein
translation. The correlation and timing of Cdkn downreg-
ulation and Pcna upregulation with upregulation of

IdVd

Figure 3. Distribution of viral infection in mouse cytomegalovirus (mCMYV)-infected cochleas. (A) B-galactosidase-stained histologic sec-
tion of an embryonic day 15 (E15) cochlea cultured in the presence of lacZ-tagged mCMYV for 9 days. (B) Immunolocalization of viral
IE1 proteins in an mCMV-infected cochlea cultured for 12 days. mCMYV and viral IE1 proteins are primarily seen in the stria vascularis
(sv), Reissner’s membrane (arrowheads), spiral ligament (sl), and surrounding periotic mesenchyme, and more sparsely in the organ of
Corti. Note that virus is absent from the cartilaginous otic capsule (A, *). Bar: (A)-50 um; (B)-35 pm.
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Figure 4. Mouse cytomegalovirus (mCMYV) induces a notable increase in proliferating cell nuclear antigen (PCNA)-positive nuclei in
mCMV-infected cochleas on days 6, 9, and 12 of culture. In embryonic day 15 (E15) + 6 (A), E15 + 9 (C), and 15 + 12 (E) controls,
PCNA-positive nuclei (brown) are relatively absent. Note the absence of PCNA-positive nuclei in the single inner hair cell (I), the three
outer hair cells (123) and epithelial nonsensory supporting cells. In contrast, mCMV-infected E15 + 6 (B), E15 + 9 (D), and E15 + 12 (F)
cochleas exhibit a dramatic increase in PCNA-positive nuclei in infected and affected cells. In E15 + 6 cochleas, PCNA-positive nuclei
are seen in the relatively normal appearing single inner hair and three outer hair cells (double arrows), as well as throughout cochlear epi-
thelia, stria vascularis (sv), Reissner’'s membrane (arrowhead), and abnormal periotic mesenchyme. By days 9 (E15 + 9) (D) and 12 (E15
+ 12) (E) of culture, the mCMV-infected cochleas seem more severely abnormal. On day 9 (D), PCNA-positive nuclei are found in the
hair cells (triple arrows) of the dysmorphic organ of Corti, Reissner’s membrane (arrowhead), the stria vascularis (sv), spiral ligament, and
in the cytomegalic, basophilic mesenchymal cells (m) found throughout the scala vestibuli (SV) and scala tympani (ST). On day 12 (F),
PCNA-positive nuclei are primarily seen in the stria vascularis and are mostly absent from the cochlear epithelial cells. Bar: (A-D)-30
um; (E, F)-50 pm.

PCNA protein informs the mechanism of cochlear hyper-
plasia.

melanocytes; the basal cells are characterized by tight
junctions and serve as a barrier between the stria vascu-
laris and the adjacent spiral ligament. The stria vascularis
of mCMV-infected E15 + 12 cochleas are severely dys-

Stria Vascularis Dysplasia plastic (Figs. 1 and 5). The cells of all three layers are

The stria vascularis is composed of three cell layers
(Kikuchi and Hilding, 1966; Jin et al., 2007). The marginal
cells face the lumen of the SM and are characterized by
numerous mitochondria and extensive membrane infold-
ing; the intermediate cells are neural crest-derived
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greatly enlarged and misaligned, making clear distinction
of the layers difficult. With mCMYV infection, many of the
cytomegalic cells contain pathognomonic kidney shaped
nuclei (Fig. 5B) and viral IE1 protein (Fig. 5B, left inset);
the melanocytes are reduced in number and dysmorphic
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Table 1
mCMV Modulation of Embryonic Cochlear Gene
Expression

Days post-infection (E15 + x)

E15 + 6 E15 + 9 E15 + 12
Gene R mn R mn R M
p19 060" 0.15 0.85° 0.15 1.37" 0.10
p21 146 0.25 148 0.14 1.12" 0.12
p27 055" 0.18 0.76* 0.21 0.94" 0.22
Pcna 1.34 0.08 3.09 0.13 2.47 0.17

Kengl 0.23" 0.26 0.42" 0.05 0.31" 0.23

R = mean relative expression ratio = mCMV/control (n = 9).
m = gene expression noise (0—1) = sg/R (where sg = SD of R).
*p <001
p < 0.001; ns = not significant (p > 0.01). mCMV, mouse
cytomegalovirus; E15, embryonic day 15.

(Fig. 5B, right inset). Finally, there is a marked downreg-
ulation of potassium channel KCNQ1 protein in the
marginal cells of the mCMV-infected stria vascularis
(compare Fig. 5D to C). This is concomitant with a highly
significant (p < 0.001) and dramatic 60 to 75% decline in
Kengl gene expression across all days of infection
(Table 1).

DISCUSSION

As noted above, congenital hCMYV infection is the lead-
ing nongenetic etiology of SNHL at birth and prelingual
SNHL not expressed at birth (Fowler and Boppana, 2006;
Nance et al.,, 2006; Grosse et al.,, 2008). Limited human
temporal bone autopsy investigation reveals an instruc-
tive correlation of pathognomonic kidney shaped nuclei
and viral antigens in the organ of Corti, Reissner’s mem-
brane, and stria vascularis, with aplasia/hyperplasia of
hair cells, as well as dysplasia of Reissner’s membrane
and stria vascularis (Myers and Stool, 1968; Davis and
Hawrisiak, 1977; Davis et al., 1977; Stagno et al., 1977;
Davis, 1979; Davis, 1981; Strauss, 1990; Rarey and Davis,
1993; Schuknecht, 1993; Teissier et al.,, 2011). Here, we
present an in vitro embryonic mouse model of CMV-
infected cochleas that mimics the human sites of viral
infection and associated pathology (Figs. 1-5). Further, it
provides initial insight into the likely cell and molecular
pathogenesis of the resultant hearing loss (Figs. 4 and 5;
Table 1).

In general, mCMV infection induces a severely dys-
morphic embryonic cochlear phenotype, including hyper-
plasia and dysplasia in the organ of Corti, Reissner’s
membrane, stria vascularis, SV, and ST. Several findings
are of particular note: hyperplasia of hair cells; downreg-
ulation of KCNQ1 protein expression in the stria vascula-
ris; hypoplastic and dysmorphic melanocytes.

Organs of Corti in mCMV-infected cochleas are charac-
terized by hyperplasia and malalignment of sensory (hair)
and nonsensory (supporting) epithelium (Figs. 1 and 2).
The organ of Corti develops from a subset of epithelial
cells occupying the floor of the cochlear duct; by E14.5,
this prosensory domain becomes totally postmitotic and
terminal histodifferentiation commences; by E17, differen-
tiated hair cells and supporting cells have arranged them-
selves into a nectin-dependent checkerboard-like pattern
along the entire length of the cochlear duct (Kelley, 2007;

Togashi et al., 2011). Withdrawal from the cell cycle is
critical to the proper histodifferentation; maintaining with-
drawal is critical to the morphologic and functional integ-
rity of the organ of Corti (Ruben, 1967). Important to this
cell cycle inhibition are the cyclin-dependent kinase inhib-
itors p19, p21, and p27 (Chen and Segil, 1999; Chen et al.,
2003; Laine et al., 2007).

The embryonic organ culture model shows a dramatic
increase in immunolocalized PCNA, a surrogate S-phase
marker of cell division, in mCMV-infected cochlear epi-
thelium and mesenchyme, including the cells in the
organ of Corti (Fig. 4). This is concomitant with signifi-
cant changes in p19, p21, p27, and Pcna gene expression
(Table 1). Inter alia, downregulation of cdk-inhibitors
results in S-phase entry, upregulation of Pcna expression,
and increased cell division. The patterns of expression
through in vitro stages equivalent to perinatal (E15 + 6)
and early postnatal (E15 + 9, E15 + 12) cochlear devel-
opment are instructive: p19 and p27 are dramatically
lower at E15 + 6, less so at E15 + 9, and normal or
elevated at E15 + 12; p21 is significantly elevated at E15
+ 6 and E15 + 9, but returns to normal with the
recovery of p19 and p27 at E15 + 12; Pcna transcript is
significantly elevated throughout.

Although p21 has been shown to compensate for p19
deletion (Laine et al., 2007), upregulation of p21 seems to
have little effect upon the delayed withdrawal from or
re-entry to the cell cycle of cells in the prosensory
domain well into the modeled early postnatal period.
Still, the fact that by E15 + 12 all three cdk-inhibitors are
at or above control levels suggests that the prosensory
epithelium is about to withdraw from the cell cycle
shortly. Finally, it is clear that by E15 + 12 there is a
well-defined population of excessive and disorganized
hair cells (Figs. 1F and 2B). What is not clear is whether
these cells result from continued proliferation of sensory
epithelium or transdifferentiation from proliferating
nonsensory epithelium or both. Also not known is
whether the apparent increased number of hair cells is
transient and will succumb to subsequent p53-mediated
apoptosis as seen with pl9 and p21 deletions (Chen
et al., 2003; Laine et al., 2007). What is certain is that mal-
alignment or loss of sensory hair cells is not compatible
with normal hearing.

The stria vascularis of mCMV-infected cochleas are
severely dysplastic, so much so that its trilaminar struc-
ture is not discernible (Fig. 5B). Concomitant is a 60 to
75% decline in Kcngl message (Table 1) and sparse
protein localization on the luminal surface of the mar-
ginal cells (Fig. 5D). KCNQ1 is a K" ion channel protein
that is critical to normal endolymph production and,
thus, the integrity of endolymphatic spaces in the coch-
lea. Loss of functional KCNQ1 K* channels results in
human and mouse deafness associated with compro-
mised production of endolymph, including the eventual
contraction of the SM, collapse of Reissner’s membrane,
atrophy of the stria vascularis, and degeneration of the
organ of Corti and spiral ganglion (Casimiro et al., 2001;
Rivas and Francis, 2005).

The stria vascularis of mCMV-infected cochleas is also
characterized by dysmorphic and insufficient numbers of
melanocytes (Fig. 5B). Intermediate layer melanocytes are
essential for normal hearing and melanocyte abnormality
results in hearing loss (Schrott and Spoendlin, 1987; Steel
and Barkway, 1989; Cable et al., 1992; Peters et al., 1995;
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Figure 5. Mouse cytomegalovirus (mCMV)-induced abnormalities in the stria vascularis. (A, B) Histologic analysis of semithin plastic
sections of control (A) and mCMV-infected (B) embryonic day 15 (E15) + 12 cochleas. In control (A), the stria vascularis (sv) is com-
posed of marginal, intermediate, and basal cells, with melanocytes in the intermediate layer exhibiting a normal phenotype (A, inset).
With mCMV infection (B), the stria vascularis is severely dysmorphic, comprised of enlarged marginal, intermediate and basal cells.
Dysmorphic and fewer melanocytes characterize mCMV-infected cochleas (right inset). Note the pathognomonic kidney shaped nuclei
(black arrows) throughout the stria vascularis, as well as immunodetectable IE1 protein in marginal cells (B, left inset) adjacent to abnor-
mal melanocytes (black arrowheads, left inset). (C, D) Evaluation of KCNQ1 and myosin expression in control and mCMV-infected E15 +
12 cochleas. KCNQ1 protein is labeled green; hair cells are labeled red with an antibody to myosin (myo); nuclei are stained with DAPI
(blue). In controls (C), KCNQI1 is abundantly present at the luminal surface of the marginal cells of the stria vascularis. In contrast,
mCMV-infected cochleas (D) show a marked decrease in immunolocalized KCNQ1 protein, exhibiting a punctate labeling pattern. Bar:
(A, B)-50 pm; (C, D)-30 pum; (B, left inset) 35 pm; (A, B, right insets) 50 pm.

Tachibana, 1999; Uehara et al., 2009). The cell and molec- on their host cells to replicate, assemble, and propagate,
ular functions of cochlear melanocytes is not certain. they elicit cell and molecular pathologic phenotypes simi-
What is known is that melanocytes are required for nor- lar to those arising from known gene mutations (Gulbahce
mal stria vascularis development and function, including et al.,, 2012; Rozenblatt-Rosen et al.,, 2012). Thus, the
mediating the organizational relationship of marginal model presented here provides a relevant and reliable
and basal cells in the trilaminal stria structure, and ion platform within which the detailed cell and molecular

regulation and transport (Steel and Barkway, 1989; Cable biology of CMV-induced deafness may be studied.
et al., 1992; Tachibana, 1999; Bush and Simon, 2007).

To summarize, we describe an in vitro embryonic
mouse model of CMV-induced cochlear pathogenesis that ACKNOWLEDGMENTS

mimics the known human pathology. There are several We thank Dr. Edward Mocarski for his generous gift

key abnormalities, any one of which would result in deaf- of lacZ-tagged mCMV RM427+ and IE1 antibody.
ness at birth or shortly thereafter, including hyperplasia
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